#1、 概述 Trie树,又称字典树,单词查找树或者前缀树,是一种用于快速检索的多叉树结构,如英文字母的字典树是一个26叉树,数字的字典树是一个10叉树。 Trie一词来自retrieve,发音为/tri:/ “tree”,也有人读为/traɪ/ “try”。 Trie树可以利用字符串的公共前缀来节约存储空间。如下图所示,该trie树用10个节点保存了6个字符串tea,ten,to,in,inn,int:
在该trie树中,字符串in,inn和int的公共前缀是“in”,因此可以只存储一份“in”以节省空间。当然,如果系统中存在大量字符串且这些字符串基本没有公共前缀,则相应的trie树将非常消耗内存,这也是trie树的一个缺点。 Trie树的基本性质可以归纳为: (1)根节点不包含字符,除根节点意外每个节点只包含一个字符。 (2)从根节点到某一个节点,路径上经过的字符连接起来,为该节点对应的字符串。 (3)每个节点的所有子节点包含的字符串不相同。 #2、 Trie树的基本实现 字母树的插入(Insert)、删除( Delete)和查找(Find)都非常简单,用一个一重循环即可,即第i 次循环找到前i 个字母所对应的子树,然后进行相应的操作。实现这棵字母树,我们用最常见的数组保存(静态开辟内存)即可,当然也可以开动态的指针类型(动态开辟内存)。至于结点对儿子的指向,一般有三种方法: 1、对每个结点开一个字母集大小的数组,对应的下标是儿子所表示的字母,内容则是这个儿子对应在大数组上的位置,即标号; 2、对每个结点挂一个链表,按一定顺序记录每个儿子是谁; 3、使用左儿子右兄弟表示法记录这棵树。 三种方法,各有特点。第一种易实现,但实际的空间要求较大;第二种,较易实现,空间要求相对较小,但比较费时;第三种,空间要求最小,但相对费时且不易写。 下面给出动态开辟内存的实现:
#define MAX_NUM 26enum NODE_TYPE{ //"COMPLETED" means a string is generated so far. COMPLETED, UNCOMPLETED};struct Node { enum NODE_TYPE type; char ch; struct Node* child[MAX_NUM]; //26-tree->a, b ,c, .....z}; struct Node* ROOT; //tree root struct Node* createNewNode(char ch){ // create a new node struct Node *new_node = (struct Node*)malloc(sizeof(struct Node)); new_node->ch = ch; new_node->type == UNCOMPLETED; int i; for(i = 0; i < MAX_NUM; i++) new_node->child[i] = NULL; return new_node;} void initialization() {//intiazation: creat an empty tree, with only a ROOTROOT = createNewNode(' ');} int charToindex(char ch) { //a "char" maps to an indexreturn ch - 'a';} int find(const char chars[], int len) { struct Node* ptr = ROOT; int i = 0; while(i < len) { if(ptr->child[charToindex(chars[i])] == NULL) { break; } ptr = ptr->child[charToindex(chars[i])]; i++; } return (i == len) && (ptr->type == COMPLETED);} void insert(const char chars[], int len) { struct Node* ptr = ROOT; int i; for(i = 0; i < len; i++) { if(ptr->child[charToindex(chars[i])] == NULL) { ptr->child[charToindex(chars[i])] = createNewNode(chars[i]); } ptr = ptr->child[charToindex(chars[i])];} ptr->type = COMPLETED;}
#3、 Trie树的高级实现 可以采用双数组(Double-Array)实现。利用双数组可以大大减小内存使用量,具体实现细节见参考资料(5)(6)。 #4、 Trie树的应用 Trie是一种非常简单高效的数据结构,但有大量的应用实例。 ##(1) 字符串检索 事先将已知的一些字符串(字典)的有关信息保存到trie树里,查找另外一些未知字符串是否出现过或者出现频率。 举例: @ 给出N 个单词组成的熟词表,以及一篇全用小写英文书写的文章,请你按最早出现的顺序写出所有不在熟词表中的生词。 @ 给出一个词典,其中的单词为不良单词。单词均为小写字母。再给出一段文本,文本的每一行也由小写字母构成。判断文本中是否含有任何不良单词。例如,若rob是不良单词,那么文本problem含有不良单词。 ##(2)字符串最长公共前缀 Trie树利用多个字符串的公共前缀来节省存储空间,反之,当我们把大量字符串存储到一棵trie树上时,我们可以快速得到某些字符串的公共前缀。 举例: @ 给出N 个小写英文字母串,以及Q 个询问,即询问某两个串的最长公共前缀的长度是多少? 解决方案:首先对所有的串建立其对应的字母树。此时发现,对于两个串的最长公共前缀的长度即它们所在结点的公共祖先个数,于是,问题就转化为了离线(Offline)的最近公共祖先(Least Common Ancestor,简称LCA)问题。 而最近公共祖先问题同样是一个经典问题,可以用下面几种方法:
- 利用并查集(Disjoint Set),可以采用采用经典的Tarjan 算法;
- 求出字母树的欧拉序列(Euler Sequence )后,就可以转为经典的最小值查询(Range Minimum Query,简称RMQ)问题了; (关于并查集,Tarjan算法,RMQ问题,网上有很多资料。) ##(3)排序 Trie树是一棵多叉树,只要先序遍历整棵树,输出相应的字符串便是按字典序排序的结果。 举例: @ 给你N 个互不相同的仅由一个单词构成的英文名,让你将它们按字典序从小到大排序输出。 ##(4) 作为其他数据结构和算法的辅助结构 如后缀树,AC自动机等 #5、 Trie树复杂度分析 (1) 插入、查找的时间复杂度均为O(N),其中N为字符串长度。 (2) 空间复杂度是26^n级别的,非常庞大(可采用双数组实现改善)。 #6、 总结 Trie树是一种非常重要的数据结构,它在信息检索,字符串匹配等领域有广泛的应用,同时,它也是很多算法和复杂数据结构的基础,如后缀树,AC自动机等,因此,掌握Trie树这种数据结构,对于一名IT人员,显得非常基础且必要! #7、 参考资料 (1)wiki: (2) 博文《字典树的简介及实现》: (3) 论文《浅析字母树在信息学竞赛中的应用》 (4) 论文《Trie图的构建、活用与改进》 (5) 博文《An Implementation of Double-Array Trie》: (6) 论文《An Efficient Implementation of Trie Structures》: